Настройка шрифта В избранное Написать письмо

Книги по медицине

Физиология высшей нервной деятельности

(Главная, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)
          В последнее время существенно уточняются функции модулирующих систем и, следовательно, механизмов регуляции ФС. При этом выявлена их большая значимость для поведения, чем это представлялось ранее. Взгляд на ФС лишь как на фактор, ухудшающий или улучшающий выполнение деятельности, сменился представлением о его более фундаментальной роли в поведении.

          Так, показано, что снижение уровня активации нервной системы у крыс, в частности за счет истощения в ЦНС дофамина (ДА), полностью нарушает как приобретенные при жизни навыки, так и врожденное мотивированное поведение. Если такую крысу бросить в бассейн с водой, то она погибает, так как не может плыть. Однако если ее ущипнуть за хвост или охладить воду в бассейне, что действует стимулирующим образом на животное, то крыса плывет и спасается. Таким образом, сохранность нервных связей, определяющих паттерн конкретного поведения, еще не гарантирует его реализацию.

          Другой пример может быть взят из работ, в которых изучались природные и приобретенные свойства у нейронов-детекторов. Известно, что свойства детекторов зрительной коры, хотя в основном генетически детерминированы, но тем не менее окончательно они формируются в сенситивный период и сильно зависят от стимульного окружения, в котором содержится новорожденное животное. Так, у котят, воспитанных в окружении вертикальных линий (в вертикальной среде), нейроны зрительной коры реагируют преимущественно на вертикально-ориентированные полосы, тогда как большая часть зрительных нейронов котят, воспитанных в горизонтальной среде, реагирует на горизонтальные линии. Особенности зрительного воспитания впоследствии сказываются и на поведении. Воспитание в горизонтальной среде вызывает у котенка трудности при передвижении между ножками стула. Котята, содержащиеся в вертикальной среде, затрудняются при хождении по ступенькам лестницы. В опытах В. Зингера у котят в сенситивный период изменяли бинокулярную стимуляцию глаз. Для этого один глаз закрывали или изменяли его положение в орбите (искусственное косоглазие). В результате у нейронов-детекторов зрительной коры формировались аномальные связи: детекторы теряли свойство бинокулярности. Далее было показано, что модификация свойств у детекторов в сенситивный период под влиянием сенсорной среды возможна лишь при сохранении модулирующего, активирующего входа к ним от ретикулярной формации среднего мозга и таламической неспецифической системы. Если устранить эти неспецифические, активирующие влияния, например разрушением ретикулярного ядра таламуса, что сопровождалось потерей ориентировочной реакции на стимул, то процесс формирования детекторов в сенситивный период приостанавливался в том полушарии, связи которого с ретикулярным ядром таламуса разрушались, и сохранялся в другом полушарии, которое продолжало получать модулирующие, неспецифические воздействия от своего ретикулярного ядра. Таким образом, для нормального формирования в сенситивном периоде свойств у нейронов-детекторов необходимы ориентировочные реакции, которые предполагают активацию от модулирующей неспецифической системы мозга.

          Модулирующие влияния в ЦНС играют не менее важную роль для процесса обучения, чем, скажем, подкрепление условного раздражителя безусловным. Показано, что примерно у 40% нейронов гиппокампа кролика можно выработать условные рефлексы при сочетании звукового стимула с электрокожным раздражителем. При этом параллельно со становлением условного рефлекса идет процесс формирования другой условнорефлекторной связи, специально изменяющей состояние данного нейрона, что выражается в росте его фоновой активности – частоты спайков («ассоциативный тонический ответ») [16]. Если по каким-либо причинам условнорефлекторное изменение состояния данного нейрона не возникает, то и вырабатываемый у него условный рефлекс не обнаруживается. Это дало основание для заключения, что ассоциативный процесс включает в себя формирование состояния, качественно специфического для каждой временной связи. Данное явление – один из ведущих механизмов формирования условнорефлекторного поведения. Деятельность не существует отдельно от состояния и выступает как единое целое с ним. Таким образом, существует два механизма условнорефлекторной деятельности: 1) настроечный, регулирующий состояние мозга и создающий определенный уровень возбудимости и работоспособности нервных центров и 2) запускающий, который инициирует ту или иную условную реакцию. Б.И. Котляр вводит принцип функционального полиморфизма мозга, согласно которому состояние мозга соответствует виду деятельности и каждому состоянию соответствует качественная специфичность структуры церебральной нервной сети. Таким образом, механизм регуляции ФС является базальным механизмом интегративной деятельности мозга. От того, как функционирует модулирующая система мозга, зависит и обучение, и осуществление врожденного поведения.

          ФС в отношении поведения выполняет прежде всего операционную функцию. Оно включено в состав целенаправленного поведения как средство для его успешного осуществления. Вместе с тем ФС может выступать в качестве цели поведения. Это особенно очевидно выступает при рассмотрении ориентировочно-исследовательской деятельности и поведения регуляции цикла бодрствование-сон.

          Дефицит активации организма, особенно в условиях сенсорной депривации, побуждает человека и животных к ориентировочно-исследовательскому поведению. Многочисленные наблюдения свидетельствуют о стремлении животных к новому, к исследованию незнакомых пространств, к манипулированию сложными устройствами. О существовании самостоятельной потребности в новизне свидетельствует и то обстоятельство, что на ориентировочном подкреплении возможно обучение: выработка сложных инструментальных рефлексов у крыс, тонкой дифференцировки стимулов у обезьян и др.

          Другим типом поведения, в котором ФС выступает в качестве цели поведения, является сон. Согласно Дж. Моруцци, переход ко сну представляет определенный вид мотивированного поведения (инстинкта), в котором можно выделить подготовительные действия, завершающие акты и цель поведения. Цикл бодрствования-сон, с точки зрения Т.Н. Ониани [27], отражает циклическое чередование мотивации сна и мотивации бодрствования. В его основе работа гомео-статического механизма, реализуемого в смене и чередовании двух форм поведения, принципиальное отличие которых выражается в различии функциональных состояний: сна и бодрствования.

          Конкретное ФС человека и животного всегда зависит от целого ряда факторов. Это прежде всего мотивация, то, ради чего выполняется конкретная деятельность. Чем значимее мотивы, тем выше уровень ФС. Содержание самого труда – наиболее важный регулятор ФС. Уже в самом задании заложены определенные требования к специфике и уровню ФС. Общий уровень сенсорной нагрузки от сенсорного пресыщения до сенсорной депривации также изменяет ФС. Конкретное ФС зависит от исходного уровня активности нервной системы, сохраняющей след от предшествующей деятельности субъекта. Наконец, специфика и уровень ФС существенно зависят от индивидуальных особенностей субъекта, в частности от таких его свойств, как сила-слабость нервной системы, экст-роверсия-интроверсия, тревожность и т. д. Так, индивиды с сильной нервной системой менее устойчивы к монотонии и раньше слабых показывают падение уровня активности нервной системы.

          2. Нейроанатомия функциональных состоянийОткрытие исследователем из Лос-Анжелеса Г. Мэгуном и итальянским ученым Дж. Моруцци в 1949 г. ретикулярной активирующей системы мозга имело решающее значение для понимания механизмов регуляции функциональных состояний. Они показали, что электрическая стимуляция срединной части ствола мозга (ретикулярной системы) во время сна животного пробуждает его и поддерживает бодрствование.

          По существу, изучение восходящей активирующей системы было начато еще раньше, уже классическими опытами Ф. Бремера с перерезками ствола мозга, результаты которых были опубликованы в 1935 г. Делая перерезки на уровне среднего мозга, он получил препарат, который назвал (рис. 43). Его электрическая активность такая же, как у нормального спящего животного: в ЭЭГ постоянно возникают так называемые сонные веретена – регулярные высокоамплитудные колебания с частотой 8-12/с. При этом зрачок у животного сужен, что также типично для нормального сна.

          Другой препарат Ф. Бремер получил в результате рассечения ствола мозга на уровне его соединения со спинным (рис. 43). Препарат получил название Он имел ЭЭГ и реакции зрачка такие же, как и у нормального животного. Для него было характерно чередование «сна» и «бодрствования» (по показателям ЭЭГ и диаметра зрачка) (рис. 44). Оба препарата различались тем, что у сенсорными раздражениями можно было вызвать лишь краткие периоды пробуждения, тогда как у аналогичная стимуляция вызывала длительное пробуждение. Таким образом, у нормального животного и у, по-видимому, существует центральный

          Рис. 43. Схема ствола мозга кошки, показывающая места перерезки при создании препаратов; 1 – мозжечок, 2 – мозолистое тело, 3 – кора, 4 – таламус, 5 – варолиев мост

          механизм поддержания бодрствования во время интервалов между раздражениями, но эта система отсутствует у препарата. Именно этому центральному механизму в экспериментах Дж. Мо-руцци и Г. Мэгуна было найдено место. Их открытия хорошо объясняли эксперименты Бремера: источником ЭЭГ-активации являются не только сенсорные пути, но и ретикулярная формация среднего мозга. Животные с ретикулярными разрушениями становились сонными, обездвиженными и оставались такими по крайней мере в течение нескольких дней после

          Рис. 44. Сравнение ЭЭГ и величины зрачка у препаратов. Быстрая и низкоамплитудная активность в ЭЭГ и расширенный зрачок, наблюдаемые у препаратов, свойственны нормальному бодрствующему животному, а синхронизированные веретена в ЭЭГ и суженный зрачок типичны для и нормального спящего животного (по Ф. Бремеру, 1937) операции. В ЭЭГ у них регистрировались сонные веретена, а сильные слуховые и тактильные раздражители могли вызывать лишь кратковременное пробуждение. Таким образом, приход сенсорных импульсов в кору по специфическим путям не ведет еще к длительному бодрствованию, но если ретикулярная формация сохранна, то импульсы, приходящие в нее по коллатералям от сенсорных путей, приводят к длительной активации коры.

          Не менее важен для регуляции сна и бодрствования задний гипоталамус. Как показали исследования, он обусловливает поведенческую активацию, а ретикулярная формация более важна для. реакции пробуждения, отражающейся в изменении ЭЭГ. У человека она возникает в виде блокады альфаритма (8-13/с) и/или усиления бета-активности (14-30/с). У животных ЭЭГ-реакция пробуждения обычно представлена усилением гиппокампального тега-ритма или общей де-синхронизацией ЭЭГ, Повреждение заднего гипаталамуса приводит к сонливости в поведении, тогда как в ЭЭГ регистрируется высокочастотная, низкоамплитудная активность бодрствования. Наоборот, кошки с повреждениями в ретикулярной формации по поведению были не сонными: они следили за зрительными стимулами, тогда как у них в ЭЭГ доминировали медленные волны сна. Т. е. возможна диссоциация поведенческой и ЭЭГ-активации, что указывает на существование двух относительно самостоятельных механизмов регуляции функционального состояния.

          Способность ретикулярной формации регулировать сенсорные пороги впервые экспериментально была изучена Д, Линдсли. В опытах на кошках и обезьянах он наблюдал, что электрическая ритмическая стимуляция ретикулярной формации (100-300/с) сопровождалась снижением порогов дискретности. После ретикулярной стимуляции в зрительной коре на каждую вспышку света, следующую с интервалом в 50 мс, возникает по отдельно вызванному потенциалу, тогда как до раздражения обе вспышки воспринимались слитно: на две вспышки возникал один вызванный потенциал. В опытах Дт. Фустера, выполненных в той же лаборатории, облегчение процесса восприятия под влиянием электрической стимуляции ретикулярной формации было исследовано при распознавании обезьянами двух конусовидных предметов, различающихся ребристой и гладкой поверхностью. Предварительно у обезьян вырабатывался инструментальный рефлекс выбора одного из предметов, который всегда подкреплялся пищей. Выбирая предмет, обезьяна должна была протянуть руку в отверстие, над которым с помощью тахистоскопа экспонировалось его изображение. При выработке рефлекса время экспозиции было достаточным для рассмотрения фигур. В основной же серии эксперимента, после того как инструментальный условный рефлекс был уже выработан, определялось минимальное время экспозиции, при котором возможно зрительное различение. Этот опыт повторялся с ретикулярной стимуляцией и без нее. Электрическая стимуляция ретикулярной формации значительно увеличивала процент правильных реакций выбора и укорачивала время двигательной реакции. Если бы только сократилось время реакции, можно было бы предполагать, что главный эффект ретикулярной формации в увеличении тонуса мышц через нисходящие пути. Однако значительное увеличение числа правильных выборов, особенно на короткие экспозиции (1 мс), свидетельствует о росте кортикальной активации и улучшении селективного внимания, которое обусловлено восходящими активирующими влияниями.

          Не менее важная роль в регуляции активности мозга принадлежит таламусу. Эта структура поражает своей склонностью к генерации ритмической электрической активности. В ответ на одиночное электрическое раздражение специфического, ассоциативного или неспецифического ядра таламуса в нем возникает ритмический разряд последействия в виде серии волн затухающей амплитуды одной частоты (8-12/с).

          Кроме того, в таламусе чаще, чем в других структурах мозга, спонтанно возникают медленные волны («сонные» веретена), которые сходны с корковыми веретенами (16-18/с).

          Повторная электрическая стимуляция неспецифических ядер таламуса на частоте около 8-12/с вызывает в коре реакцию рекрутинга, которая воспроизводит частоту стимуляции и очень похожа на веретена, спонтанно возникающие в коре. На этом основании Р. Морисон и Ф. Демпси, первыми открывшие рекрутирующий ответ, предположили существование в срединной части таламуса генерального пейсмекера или ритмического осциллятора, распространяющего синхронизированные влияния на обширные области коры в виде медленных волн ЭЭГ.

          Между ретикулярной активирующей системой и таламической системой выявлены реципрокные отношения: первая обусловливает пробуждение и активацию, вторая – подавление кортикальной возбудимости и сон.

          Однако представление о функции таламуса только как тормозной было отвергнуто экспериментами Г. Джаспера. В 1955 г. появилась его теория о диффузно-проекционной таламической системе, согласно которой неспецифические структуры таламуса могут влиять на кору не только тормозно, но и активирующе. Реакции активации коры, вызываемые с таламуса, локальны и имеют более короткую продолжительность по сравнению с ЭЭГ-активацией, обусловленной активирующей системой ствола мозга. Они также более устойчивы к угашению, чем генерализованная ЭЭГ-активация.

          Таким образом, ЭЭГ-реакции активации, вызываемые активизирующей системой ствола мозга и неспецифической системой таламуса, различаются как генерализованные и локальные, тонические и фазические, быстро и медленно угасающие. Эти особенности позволяют связывать функцию активирующей системы ствола мозга с поддержанием определенного уровня активности в нервной системе, а таламическую неспецифическую систему с селективным вниманием и локальным ориентировочным рефлексом.

          Существование в неспецифическом таламусе двух систем: активирующей и тормозной – было экспериментально подтверждено также работами М. Монье с сотрудниками. По их данным, стимуляция неспецифического таламуса низкой частотой (3-25/с) при слабых интенсивностях и больших длительностях электрического импульса возбуждает тормозную систему таламуса, увеличивая в ЭЭГ процент дельта-волн и веретен, тогда как высокочастотная стимуляция импульсами меньшей длительности и большей интенсивности возбуждает активирующую систему таламуса. У одного и того же нейрона моторной коры низкочастотная стимуляция таламуса снижает, а высокочастотная увеличивает частоту его разрядов.

          Исследование нейронных механизмов модулирующей функции таламуса показало существование в нем нейронных пейсмекеров ритмической активности. Они были найдены в специфических ядрах таламуса [52] в неспецифическом таламусе [11]. Эти нейроны в условиях покоя имеют тенденцию разряжаться последовательностью пачек спайков, их появление коррелирует с возникновением в ЭЭГ сонных веретен и медленных волн. Пачечные разряды нейронов таламуса фазовоспецифичны, они привязаны к определенным фазам медленных волн ЭЭГ (ВП и реакции перестройки биотоков мозга на мелькающий свет). Сенсорные раздражения (звуковые, кожные и др.) вызывают в таламусе реакцию десинхронизации в виде разрушения пачек спайков [11]. Нейронной реакции десинхронизации соответствует появление ЭЭГ-реакции активации. Нейроны неспецифического таламуса, демонстрирующие реакции синхронизации и десин хронизации и контролирующие ЭЭГ-активностъ,обла дают свойством, авторитмичности. Они обнаруживают эффект резонанса, который может быть выявлен мелькающим световым раздражителем. Таламический пейсмекерритмической активности – сетевой пей-смекер, включающий интернейроны с обратными отрицательными и положительными связями.

          Таламические структуры мозга оказывают на кору двойное влияние. В режиме пачечной активности они тормозят ее, вызывая синхронизацию ЭЭГ. При одиночных спайковых разрядах кора испытывает активирующее воздействие, выражающееся в десинхронизации ЭЭГ. Передача эстафеты активирующих влияний с уровня ретикулярной формации ствола мозга на уровень таламический означает переход от генерализованной активации коры к локальной.
  
   К структурам мозга, которые влияют на ЭЭГ– и поведенческую активацию, относится и фронтальная кора. Она сдерживает чрезмерное возбуждение в ЦНС. Один из классических синдромов повреждения фронтальной коры – появление у животных двигательной гиперактивности. Предполагают, что возбуждения ретикулярной формации активируют фронтальную кору, которая в свою очередь через отрицательную обратную связь снижает активность ретикулярной формации. С именем Дж. Моруцци связано открытие в средней части варолиева моста тормозной системы, способной вызывать сон (синхронизирующего центра Моруцци). Им показано, что перерезка ствола мозга на уровне середины моста приводит к устойчивой ЭЭГ-де-синхронизации в коре и, как можно судить по ограниченным двигательным реакциям такого препарата, к его постоянному бодрствованию. Сенсорный поток у такого препарата не больше, чем у, который все время спит. Следовательно, при перерезке варолиева моста исчезновение сна связано с устранением некоторых тормозных синхронизирующих влияний, обычно поступающих из ретикулярной системы моста. Одностороннее разрушение в середине моста вызывает появление десинхронизированной ЭЭГ только на стороне поражения. Раздельное фармакологическое выключение ростральных и каудальных частей ствола мозга также подтверждает существование синхронизирующего центра в его каудальной части. Введение барбитурата (теопентала), который блокирует нейроны ретикулярной формации, в сонную артерию, снабжающую кровью средний мозг и вышележащие структуры, вызывало синхронизацию ЭЭГ, что соответствовало отключению активизирующей ретикулярной системы. Введение того же вещества через позвоночную артерию, поставляющую кровь в заднюю часть моста и продолговатый мозг, вызывало десинхронизацию ЭЭГ. Этот эффект соответствует выключению тормозной синхронизирующей системы.

          П. ДеллиМ. Бонвале выявили существование бульварного тормозного механизма, синхронизирующего ЭЭГ и оказывающего физическое торможение. Благодаря этому механизму в процессе угашения ориентировочного рефлекса укорачивается ЭЭГ-реакция активации.

          В 1967 г. М. Жуве в стволе мозга была открыта новая структура, играющая критическую роль в развитии медленного сна, – ядра шва, которая захватывает срединную часть продолговатого мозга, моста и среднего мозга. Ее разрушение устраняло синхронизацию ЭЭГ и медленный сон. С помощью специальной методики флуоресценции гистохимики в Швеции показали, что нейроны ядер шва синтезируют серо-тонин и направляют его через свои аксоны к ретикулярной формации, гипоталамусу, лимбической системе. Серотонин – тормозный медиатор моноаминер-гической системы мозга. Блокада синтеза серотонина устраняет у кошки медленный сон, у которой сохраняется лишь парадоксальный сон и бодрствование, удлиненное за счет медленного сна.

          Предполагают, что тормозная функция фронтальной коры реализуется через систему ядер шва. С ядрами шва и фронтальной корой тесно взаимодействует и преоптическая область гипоталамуса, вызывающая синхронизацию ЭЭГ и поведенческий сон. Преоптическая область имеет мощные проекции к орбитальной коре и ядрам шва.

          В латеральной части покрышки ствола мозга обнаружено скопление нейронов, синтезирующих норад-реналин (синее пятно). Стимуляция синего пятна вызывает торможение нейронной активности во многих структурах мозга при росте двигательного возбуждения животного и ЭЭГ-десинхронизации. Полагают, что активирующее влияние синего пятна осуществляется через механизм торможения тормозных интернейронов. Ядра шва и синее пятно действуют как антагонисты. Их активация противоположно влияет на фоновую ЭЭГ. Обе системы находятся в реци-прокных отношениях: разрушение одной из них усиливает метаболическую активность другой (процессы синтеза норадреналина или серотонина).

          Рядом с синим пятном существует группа гиганте кихретикулярных нейронов, которые направляют свои аксоны вверх и вниз к различным структурам мозга. Это тоже критическая структура для развития парадоксального сна. В бодрствовании и МС эти нейроны не активны, они редко разряжаются спайками. Но они первыми реагируют на наступление ПС. Их активность драматически возрастает и остается на этом уровне в течение всего периода ПС. Во время ПС кроме тонической активности у них можно видеть взрывы спайков, которые непосредственно предшествуют быстрым движениям глаз.

          По мнению Г. Шеперда [49], управление сном и бодрствованием осуществляется группой структур, которые образуют распределенную систему в мозге. Важнейшую роль в этой системе играют три стволовых центра, в каждом из которых действует особый медиатор. Состояние бодрствования связано с активностью норадренергических волокон (синее пятно), а глубокий медленный сон – с активностью серотонинергических волокон (дорзальные ядра шва). Интересную гипотезу, объясняющую взаимодействие этих центров в 1977 г. выдвинули исследователи из Гарвардского университета А. Хобсон и Р. Мак-Карли. Они считают, что чередование бодрствования и сна задается холинергическими гигантскими ретикулярными нейронами гигантоклеточного ядра моста, которые характеризуются самовозбуждающимися связями. Возбуждаясь, эти нейрону посылают импульсы к синему пятну и дорзальным ядрам шва. Во время бодрствования их активность подавлена за счет тормозных влияний из синего пятна. Под влиянием гигантоклеточного ядра моста находятся многие структуры мозга, которые и обусловливают различные тонические и фазические проявления ПС.

          3. Физиологические индикаторы функциональных состоянийВыделяют три основные группы физиологических реакций, по которым судят об изменении ФС человека: двигательные, вегетативные и электроэнцефалографические.

          Среди двигательных показателей часто используют уровень двигательной активности. Он может быть измерен количеством и интенсивностью различных фазических двигательных реакций, приходящихся на определенный интервал времени. Важным показателем является также уровень фонового мышечного напряжения (тонуса), при котором удерживается определенная поза или выполняются различные движения.

          В качестве вегетативных показателей широко используются характеристики дыхательной системы (частота и глубина дыхания); кожногальванический рефлекс, его тоническая и фазическая форма, или изменение проводимости кожных покровов; гистограмма желудка, отражающая ее тонический и фазический компоненты; артериальное давление; расширение и сужение сосудов головы и конечностей. Для измерения мозгового кровотока получили распространение методы реографии и томографии. Среди показателей сердечно-сосудистой системы используют среднюю частоту пульса и ее дисперсию, систолический (ударный) объем пульса, а также минутный объем сердца.

          Систолический объем сердца измеряется количеством крови, которое сердце выбрасывает в сосуды при каждом сокращении. У взрослого человека в состоянии относительного покоя систолический объем каждого желудочка составляет 70-80 мл. Минутный объем сердца – количество крови, которое сердце выбрасывает в легочный ствол и аорту за 1 мин. Он измеряется как произведение величины систолического объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3-5 л. При интенсивной работе он увеличивается до 30 л и более. При менее тяжелой работе минутный объем сердца растет за счет повышения величины систолического объема и частоты сердечных сокращений, а при большой мощности только за счет учащения сердечного ритма. При больших нагрузках систолический объем может увеличиваться до 150-200 мл, ЧСС до 200 уд/мин, а АД в плечевой артерии возрастать до 200 мм рт. ст. ЧСС, которая часто используется в качестве объективного показателя функционального состояния и его сдвигов под влиянием той или другой нагрузки, является результатом взаимодействия симпатического и парасимпатического отделов автономной нервной системы. При этом возрастание ЧСС может возникать не только в результате роста симпатических влияний, но и за счет снижения парасимпатической активности. Поэтому данные о частоте пульса должны быть дополнены информацией об активности симпатической и парасимпатической систем. Таким показателем, более полно характеризующим состояние сердечнососудистой системы, является индекс напряжения (ИН), предложенный Р.М. Баевским: МО – мода, наиболее вероятное значение случайной величины (центр гистограммы Р-Р интервалов); АМО – амплитуда моды (вероятность доминирующего Р-Р интервала); Ах – вариационный размах Р-Р интервалов; Ах = х –х. Индекс напряжения пропорционален средней частоте сердечных ударов и обратно пропорционален величине разброса интервала между Р-Р зубцами ЭКГ (вариационному размаху). Величина АМО пропорциональна активности симпатической регуляции ритма сердца, Ах увеличивается параллельно активности парасимпатической (вагусной) регуляции. Индекс напряжения наиболее полно описывает гистограмму распределения Р-Р интервалов.

          Показано, что с ростом тренировки у спортсменов независимо от возраста и пола достоверно увеличивается мода и средняя величина вариационного размаха, уменьшается средняя величина амплитуды моды, т.е. уменьшается индекс напряжения. Для тренированного спортсмена высокой квалификации характерна низкая частота пульса в покое (брадикардия) и резкое возрастание ЧСС на физическую нагрузку. Это говорит о широком рабочем диапазоне, в котором функционирует его сердце.

          Построение частотных спектров ритмограммы сердца на базе ЭВМ существенно расширило возможности оценки ФС по этому показателю. В работах Д .Н. Же-майтите в спектрах ритмограммы выделены частотные зоны, характеризующие активность симпатического, парасимпатического и эндогенного механизмов регуляции сердечно-сосудистой системы.

          Для диагностики ФС, особенно в клинике, широко используют различные ЭЭГ-реакции. При визуальном анализе ЭЭГ обращают внимание на выраженность альфа-ритма, так как при малейшем привлечении внимания к любому стимулу развивается его депрессия или реакция блокады альфа-ритма (рис. 45). Хорошо выраженный альфа-ритм – показатель покоя, релаксации. Более сильная реакция активации выражается не только в блокаде альфа-ритма, но и в усилении высокочастотных составляющих ЭЭГ: бета-и гамма-активности. Падение уровня ФС выражается в уменьшении доли высокочастотных составляющих и росте амплитуды у более медленных ритмов: тетаи дельта-колебаний.

          Количественно оценивать динамику изменения ЭЭГ помогают ее частотные спектры, которые у каждого человека являются его устойчивой индивидуальной характеристикой. Выделяют несколько типов частотных спектров фоновой ЭЭГ бодрствования: ЭЭГ

          Рис. 45. ЭЭГ бодрствующего человека при восьми отведениях с поверхности черепа. Локализация активных электродов указана на схеме слева. Индифферентный электрод на мочках ушей. Когда испытуемый открывает глаза, возникает депрессия альфа-ритма

          с альфа-ритмом (1) и без альфа-ритма (2), а также с преобладанием бета-активности (3) и спектра ЭЭГ десинхронизированного типа, когда ни один из ритмов не доминирует (4).

          Реакция перестройки биотоков мозга более чувствительно реагирует на изменение ФС, чем фоновая ЭЭГ. Она состоит в следовании колебаний ЭЭГ за частотой ритмической сенсорной стимуляции. Так, биотоки мозга особенно легко воспроизводят ритм световых мельканий. В тех случаях, когда частота световых мельканий не соответствует ФС, в ответе появляются гармоники: высокие (вторая, третья и т. д.), когда на фоне возбуждения на каждую вспышку мозг реагирует появлением не одного, а двух или трех колебаний. Со снижением ФС в биотоках воспроизводятся субгармоники – частоты, в два-три раза более редкие, чем световые мелькания. Количественно реакция перестройки биотоков мозга также может быть измерена с помощью ее частотного спектра.

          Об изменении ФС можно также судить по изменению реактивных потенциалов (последовательности колебаний) на одиночный стимул. Их выделение из ЭЭГ стало возможным благодаря технике когерентного накопления. Среди реактивных потенциалов различают вызванные потенциалы (ВП) или усредненные вызванные потенциалы (УВП). Их получают в результате усреднения реактивных потенциалов относительно вызывающих их сенсорных стимулов. Усреднение ЭЭГ относительно начала двигательной реакции привело к выделению другой группы реактивных потенциалов, которые получили название «с событиями, связанные потенциалы».

          Изменения ФС отражаются в ранних компонентах ВП с латенцией пика менее 100 мс. С привлечением внимания к стимулу, под влиянием инструкции или в результате действия экстрараздражителя, который, как известно, усиливает ориентировочные реакции и сдвигает ФС в сторону возбуждения, амплитуда их растет, латенция уменьшается. Многие исследователи связывают с ориентировочным рефлексом поздний компонент вызванного потенциала – ПЗОО, так как его амплитуда увеличивается при предъявлении редкого, неожиданного стимула или на изменение многократно повторявшегося стимула. Однако, по другим данным, амплитуда волны ПЗОО зависит и от других факторов. Увеличение амплитуды ПЗОО связано с процессами, развивающимися при обучении, и является хорошим прогностическим признаком успешности запоминания. Другой причиной роста ПЗОО может быть моторный потенциал – положительное отклонение, сменяющее негативный потенциал готовности. По своим временным параметрам он совпадает.

          В составе ВП выделяют несколько негативных потенциалов. Среди них Р.Наатаненом выделена негативность рассогласования – негативный потенциал с пиковой латенцией около 100 мс и длительностью около 200 мс. Его получают в результате процедуры вычитания УВП на стандартный (наиболее часто повторяющийся) стимул из УВП на стимул, который отличается от стандарта и редко применяется. Чем больше различие между стимулами, тем больше негативность рассогласования. Этот показатель рассматривается как выражение рассогласования возбуждения от редко предъявляемого стимула с нервной моделью стандартного, повторяющегося стимула. За негативностью рассогласования часто следует двухфазное негативно-позитивное колебание, которое усиливается с новизной и субъективной значимостью стимула. Негативный компонент этого колебания получил название процессорной негативности. Выделяют также негативность с латенцией пика около 150 мс в затылочных областях и латенцией 100 мс в вертексе, которая обнаруживает связь с эмоциональной напряженностью. У тревожных лиц его амплитуда увеличена. Усиление Н150 положительно коррелирует с числом ложных тревог и трудностями при выполнении задания (плохим опознанием эталонного стимула). Компонент Н150 используют в диагностических целях при определении ФС с повышенной эмоциональной напряженностью.

          4. Гетерогенность модулирующей системы мозгаОдно время считалось, что, несмотря на большое разнообразие физиологических реакций (ЭЭГ, КГР, ЭКГ, ЭМГ и др.), которые обычно используются для оценки ФС, все они в одинаковой мере связаны с активацией неспецифической системы мозга и что по динамике любой из них можно предсказать изменение всех остальных реакций. Такой подход основывался на появившейся в 1951 г. концепции Д. Линд-ели о единстве и синергизме восходящих и нисходящих влияний от неспецифической системы мозга, обусловливающих параллелизм всех ЭЭГ-х, вегетативных и моторных реакций активации.

          Однако позже были получены данные о низких коэффициентах корреляции между различными показателями активации, а также о диссоциации ЭЭГ и поведенческого пробуждения. Введение собаке атропина вызывает ЭЭГ медленного сна, в то время как животное поведенчески продолжает бодрствовать. С помощью физосигмина можно вызвать активированную ЭЭГ, тогда как животное будет находиться в состоянии дремоты.

          Многочисленные данные о разнонаправленном изменении различных показателей активации (в том числе ЭЭГ и ЧСС) были обобщены Дж. Лейси в его концепции «дирекционной фракционности активации». По Лейси, существует не единая система неспецифической активации, а несколько субсистем, выражением которых являются вегетативные, моторные и ЭЭГ-реакции.

          П.К. Анохину [1] принадлежит концепция «специфичности неспецифической активации «. Он утверждает, что каждый тип мотивации обеспечивается возбуждением собственной неспецифической активирующей системы, обладающей особой химической специфичностью. В опытах на животных он выделил и описал различные ЭЭГ паттерны для оборонительной, пищевой и ориентировочной мотивации и, используя различные фармакологические вещества, продемонстрировал возможность избирательной блокады каждого из этих состояний.
  
          Известна точка зрения А. А. Роутенберга, выделяющего две системы активации: лимбическую систему и ретикулярную формацию ствола мозга с их относительным антагонизмом. Активирующая ретикулярная формация обеспечивает энергетическую базу исполнения реакций и имеет тенденцию участвовать в оборонительном поведении, тогда как лимбическая система занята преимущественно активацией вегетативных процессов и связана с подготовительными фазами поведения.

          С помощью факторного анализа ЭЭГ затылка и лба В.М. Русаловым выделено четыре общемозговых интегральных ЭЭГ-фактора: 1) фактор энергии медленных волн; 2) фактор частоты медленных ритмов; 3) фактор активности бета-2; 4) фактор пространственно-временной сопряженности ЭЭГ. Факторы рассматриваются как отражение независимых аспектов регуляции уровня неспецифической активации, за которыми стоит функционирование раздельных и относительно самостоятельных систем активации мозга.

          В свете этих представлений функциональное состояние является результатом взаимодействия или баланса отдельных субсистем активации, т. е. ФС – явление системное, которое требует системного подхода.

          Серьезное подтверждение существования субсистем активации, взаимодействие которых определяет функциональное состояние человека, получено в психофизических экспериментах.

          В исследованиях Р. Тейера испытуемые ранжировали по 4-балльной системе собственные состояния (или «субъективную активацию») в соответствии с предложенным списком. Это был перечень прилагательных для различных состояний, укладывающихся в шкалу от напряженного бодрствования до спокойного состояния. Все эмоциональные состояния намеренно исключались. Методом факторного анализа было выделено два генеральных фактора регуляции ФС, взаимодействие которых и определяет особенности каждого состояния. Фактор I был определен как «общая активация и деактивация-сон» или шкала переживаний от бодрствования до сна. На одном полюсе – ощущение мощи, энергии, живости, на другом – ощущение сонливости, усталости. Фактор II («высокая активация и общая деактивация») представлял шкалу переживаний от напряженности до безмятежности и спокойствия. Изменение субъективной активации по шкале бодрствования хорошо коррелировало с изменением температуры тела в цикле бодрствование-сон, и физические упражнения увеличивали уровень субъективной активации по этой шкале. Усиление тревожности сопровождается ростом субъективной эмоциональной активации и падением субъективной активации по шкале бодрствования. Реципрок-ность изменений двух активации выявилась и в связи с циркадным ритмом.

          Две системы субъективной активации методом семантического дифференциала выделены В.И. Викторовым. Показано их различное взаимоотношение с успешностью обучения в вузе. Фактор А, охватывающий континуум состояний от спокойствия до волевого усилия, связан с успешностью обучения куполообразной зависимостью, тогда как фактор Р, соответствующий шкале переживаний от печали до радости, и успешность обучения связаны отрицательной линейной зависимостью.

          Несколько субсистем активации можно выделить и в семантическом пространстве «аффективных значений», полученных Ч. Осгудом методом семантического дифференциала. Ведущие факторы пространства Ч. Осгуда интерпретированы как оценка (1), сила (потенция) (2) и активность (3), где фактор активности соответствует шкале эмоциональности, фактор силы – шкале бодрствования, по Р. Тейеру, а фактор оценки – шкале приятных и неприятных переживаний. Существенной особенностью 11 ространства аффективных значений Ч. Осгуда является его универсальность, т. е. независимость от выборки обследуемых, различающихся культурой, возрастом, уровнем интеллектуального развития, языком. Это указывает на то, что в пространстве аффективных значений, по-видимому, находят отражение некоторые общие физиологические закономерности работы мозга, имеющие отношение к базаль-ным механизмам регуляции состояний человека.

          Подтверждение существования двух субсистем активации: эмоциональной и неэмоциональной – получено нами при построении семантических пространств состояний методом многомерного шкалирования (по алгоритму Торгерсона). Испытуемые ранжировали степень различия пар слов из списка, который включал как названия эмоций, так и состояний с минимальной эмоциональной компонентой (например, спокойствие, растерянность, уверенность и др.). Семантическое пространство состояний у всех оказалось трехмерным. Его оси ортогональны и интерпретированы как: 1) шкала знаков состояний (положительные – отрицательные состояния); 2) шкала бодрствования или готовности к действию (неэмоциональная активация – НЭА); 3) шкала выраженности эмоционального тона (эмоциональная активация – ЭА).

          Индивидуальные семантические пространства состояний различались субъективной значимостью трех основных осей пространства. Улиц с низкой реактивностью (по тесту Я. Стреляу) и высокой экстраверсией (по Г. Айзенку) шкала бодрствования (или неэмоциональной активации) имела более высокий удельный вес по сравнению со шкалой эмоциональной активации.

          Представление о системном характере регуляции ФС получило подтверждение и при изучении специального класса регуляторов ФС – волновых генераторов электрической активности мозга. Известно, что модулирующая система распространяет два типа влияний: 1) тонические, когда изменяется средний уровень возбудимости нервной системы, и 2) ритмические, когда возбудимость нервных элементов меняется периодически.

          Сейчас накоплены многочисленные данные о том, что поток возбуждения, поступающий в мозг по сенсорным путям, квантуется его ритмической активностью (тета-, альфа-активностью, волнами ЭКГ и др.). Ритмической модуляции подвергаются также и исполнительные, двигательные системы. Время простой сенсомоторной реакции, вероятность появления произвольной двигательной реакции модулируются периодом альфа-волны у человека. Ухудшение и улучшение зрительного восприятия эмоционального слова по показателю КГР связаны с различными фазами альфа-волны. Скорость привыкания также зависит от фазы альфа-волны, с которой совпадает подача повторяющегося стимула. Двигательные инструментальные реакции крысы – нажим на педаль и ее отпускание – соответствуют разным противоположным фазам тета-волн. Высказано предположение, что ритмическая активность мозга осуществляет квантование и в системе памяти.


(Главная, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)

--
04.09.08 (02:19)
Автор Данилова Н.Н., Крылова А.Л.
Написать письмо


[Комментировать]